
Synthesis of Cyclopropane Derivatives from Electron-deficient Olefins and Dichloromethane via Copper(I) Catalysed Photochemical Addition followed by an Electroreductive Dehalogenation Reaction

Michiharu Mitani,* Yasuo Yamamoto, and Kikuhiko Koyama

Department of Synthetic Chemistry, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380, Japan

The CuCl-catalysed photochemical reaction of electron-deficient olefins with dichloromethane gave 1,3-dichloro compounds, which then afforded cyclopropane derivatives by electrochemical reduction.

The synthesis of cyclopropane derivatives by the transfer of a methylene group of di-iodomethane to olefins has been successful using the Simmons–Smith reaction¹ and some of its variations.² However, these methods are limited in that only electron-rich olefins are used because the intermediate metal– methylene carbenoid species are electrophilic and because di-iodomethane is more often used as the cyclopropanation reagent than dichloromethane which is less labile. We report here a reaction in which the methylene group of dichloromethane, although in a two-step process, can be transferred to electron-deficient olefins to give cyclopropane derivatives in a scheme that overcomes the limitation of, and complements, the Simmons–Smith type syntheses.

a;	$K^{*} = H, K^{*} = CN$
b;	$\mathbf{R}^1 = \mathbf{H}, \mathbf{R}^2 = \mathbf{CO}_2 \mathbf{Et}$
c;	$R^1 = H, R^2 = COMe$
d;	$R^1 = Me, R^2 = CN$
e;	$R^1 = Me$, $R^2 = CO_2Et$
f;	$R^1 = CH_2CO_2Et, R^2 = CO_2Et$

1:1 Adducts of dichloromethane and the electron-deficient olefins (1a-f) were obtained using a CuCl-catalysed photochemical procedure which we have developed for addition reactions of halogen compounds to olefins.³ In a typical example of the complete sequence $(1) \rightarrow (3)$, a solution consisting of acrylonitrile (6 mmol), CuCl (0.4 mmol), CH₂Cl₂ (40 ml), and Bun₄NBr (1.6 mmol) was irradiated using a low-pressure Hg lamp for 30 h under a nitrogen atmosphere. After work-up of the solution (addition of 10% aqueous HCl, extraction with Et₂O, washing with H₂O, drying over MgSO₄, and solvent removal), 2,4-dichlorobutanenitrile (2a) was obtained in an almost pure form.[†] A solution of (2a) (5 mmol) in Me₂SO (DMSO) (20 ml) containing Et₄NO₃SC₆H₄Me-p (0.2 M) as supporting electrolyte was electrolysed in an undivided cell with carbon rod electrodes as cathode and anode. After electrolysis had been carried out for 10 h at a constant voltage,[‡] the DMSO solution was poured into water and the products extracted, first with n-pentane and then with Et₂O. After the Et₂O and n-pentane were carefully removed, the desired product was purified by silica gel chromatography (278 mg, 83%) and identified as cyclopropanecarbonitrile (3a)by spectroscopic analysis and by comparison of its i.r. and n.m.r. spectra with those of the authentic material.

[†] By v.p.c. analysis, (2a) was the only volatile component in the residue in 90% yield. Oligo- or poly-(acrylonitrile) were possible impurities indicated by ¹H n.m.r. spectroscopy of the residue.

[‡] The voltage between the anode and cathode was 8 V with an initial current of 50 mA and a final current of 30 mA.

Table 1			
	Olefin (1)	Yield (2), %	Yield (3), %
	(a)	90	83
	(b)	93	82
	(c)	85	51ª
	(d)	90	90
	(e)	65	73
	ď	70	62

^a 5-Chloropentan-2-one was also produced (36% yield).

The results of the syntheses of the cyclopropane derivatives (3) from dichloromethane and the electron-deficient olefins (1a-f) via the chloro compounds (2) are summarized in Table 1. In the electroreduction of (2a) in dipolar solvents other than DMSO, *e.g.* dimethylformamide (DMF), MeCN, or hexamethylphosphoramide (HMPA), (3a) was produced in poorer yields (40, 35, and 3% in DMF, MeCN, and HMPA, respectively).

To introduce the chlorocyclopropane functionality into an olefin, 2,4,4-trichlorobutanenitrile (4) was produced in 91% yield by irradiation of a chloroform solution of acrylonitrile, CuCl, and Bun_4NBr ; (4) was then electroreduced in DMSO. Unfortunately, 2-chlorocyclopropanecarbonitrile, the expected product, was obtained only in 7% yield.

CHCl₂CH₂CHClCN (4)

4)

Our methodology gives satisfactory results for the intro-

duction of the cyclopropane group into compounds with terminal electron-deficient olefinic groups, but cannot be used to synthesise cyclopropane derivatives of compounds with non-terminal electron-deficient double bonds such as in diethyl maleate and ethyl crotonate because the addition reaction of dichloromethane could not be performed. We propose a tentative mechanism for the CuCl-catalysed reaction in which dichloromethane oxidatively adds to Cu^I to generate a Cu^{III} complex which adds to the olefins and then reductively eliminates to form the addition products. It might be expected from this that addition of ligands to stabilize the Cu^{III}

with non-terminal olefins. Investigations are now in progress to see if this is true. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, for which we are grateful.

intermediate may facilitate the reaction of dichloromethane

Received, 6th July 1983; Com. 908

References

- H. E. Simmons and R. D. Smith, J. Am. Chem. Soc., 1959, 81, 4256; H. E. Simmons, T. L. Cairns, S. A. Vladuchick, and C. M. Hoiness, Org. React., 1973, 20, 1.
- G. Wittig and K. Schwarzenbach, Angew. Chem., 1959, 71, 652; J. Nishimura, J. Furukawa, N. Kawabata, and H. Koyama, Bull. Chem. Soc. Jpn., 1971, 44, 1127; N. Kawabata, I. Kamemura, and M. Naka, J. Am. Chem. Soc., 1979, 101, 2139.
- 3 M. Mitani, M. Nakayama, and K. Koyama, *Tetrahedron Lett.*, 1980, 21, 4457.